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Analysis of the Harmonic Raman-Nath equation 
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ENEA. Dip. TIB, Divisione Fisica Applicata, CRE Frascati, CP 65 Frascati, Rome, Italy 

Received 28 September 1983 

Abstract. We analyse the Harmonic Raman-Nath equation and present a non-trivial 
perturbative solution. The connection with the conventional Raman-Nath equation is also 
discussed. 

1. Introduction 

A previous paper Bosco and Dattoli (1983) has been devoted to the analysis of the 
so called Raman-Nath (RN) equations Raman and Nath (1936) and was motivated by 
the fact that although they appear in many fields of physics (for a partial list of 
references see Bosco and Dattoli (1983)) a systematic approach to their study is still 
lacking. 

The RN type equations belong to the class of recursive differential ones and their 
analytical solution seems to be unobtainable in terms of known functions. In Bosco 
and Dattoli (1983), however, a perturbative approach to the problem, useful for the 
numerical analysis of many physical situations, was presented. 

Together with the RN equation another type of equation often appears. This 
equation, called henceforth the Harmonic Raman-Nath (HRN) equation, presents a 
number of analogies with the RN one and will be analysed, in the present paper, by 
means of a generalisation of the technique proposed in Bosco and Dattoli (1983). 

For our aim we recall that the RN equation can be written in its most general form 
as (Bosco and Dattoli 1983) 

i(dC,/d.r) =(a.+pI)IC,+n(cl,,,+C,-,) (1.1) 

CdO) = b , o  (1.2) 

where 1 is an integer, and the initial conditions are set by 

furthermore a, p and n are constants. 
The HRN equation reads 

i(dC,/d.r) =(a+pI) lC,+n[(1+ l )1’2C~+~+dIC~-~]  (1.3) 
with the same initial conditions. The choice of‘the term harmonic to distinguish (1.3) 
from (1.1) is self-explanatory. 

A list of the physical problems to which (1.3) is relevant might be quite lengthy, 
let us quote among them the free electron laser (Shore and Eberly 1976, Dattoli and 
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Renieri 1984) and the interaction of a multilevel system with em radiation (Shore and 
Eberly 1976). 

In this paper, however, we shall not consider a specific physical problem, but we 
shall be concerned with the analysis of the solution of (1.3) which may be of relevance 
to the above quoted problems. 

The paper is organised as follows. In 9 2 we shall present a method of solution for 
the ‘unperturbed’ limit, in 9 3 we analyse the extension of the method to the first 
‘order-perturbed’ solution, finally 9 4 will be devoted to the discussion of the connection 
of the HRN equation with the RN one and to conclusive remarks. 

2. Unperturbed limit 

The exact solution of (1.3) is beyond the scope of this paper and, as already remarked 
in the introduction, perhaps not even obtainable in terms of known functions. 

We shall content ourselves with a non-trivial perturbative solution using, as 
expansion parameter, the coefficient p. The reason for this choice resides in the fact 
that many of the physical problems in which the HRN equation plays a significant role, 
share as a common feature the small relative size of p with respect to the other 
parameters entering the equation. 

The first step of our analysis will therefore be the solution of (1.3) in the 
‘unperturbed’ limit, i.e. when p is set zero. We concentrate on this case for two main 
reasons: 

(i) Because an analytical solution is obtainable (Dattoli and Renieri 1983, 1984, 
Marcuse 1980). 

(ii) Because the technique of solution employed turns our to be very effective for 
the perturbed case. The equation we are interested in is? 

idC? /dT=  culC? +R[(1+1)”2C?+1 +J lc? - l ]  

( 0 )  = 81.0 (2.1) 

a solution of (2.1) can be found by a direct generalisation of the ‘shift’ operator 
technique employed in Bosco and Dattoli (1983). 

We introduce two operators A and A +  which once acting on any function of 1 give 

Afi = Jlf-i A’f, = (1 + 1)1’2fr+l. (2.2) 

The ‘annihilation’ and ‘creation’ operators introduced above are different from the 
‘shift’ ones of Bosco and Dattoli (1983) since they are not commuting quantities and 
fulfil the well known law of commutation 

[A, A+] = 1.  (2.3) 

(2.4) 

If we now set 

C: (x) = (+)’My (x) exp(-iplx) 

where x = RT and /3 = ./a, and we insert (2.4) into (2.1), we can rewrite our main 
equation, using (2.2), as 

dM? (x)/dx =[exp(ipx)A -exp(-ipx)A’]M?(x) 

M :  (0) = i‘8,,o. 
(2 .5 )  

t The superscript 0 stands for zero-order perturbation. 
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We can now write down the formal solution of (2.5) as follows 

where [,I+ denotes time ordering, indeed the 'transfer' operator 

f o ( x )  = exp(ipx)A-exp(-ipx)A' (2.7) 
does not commute with itself at different 'times'. 

We overcome the usual difficulties associated with the time ordering as in Bosco 
and Dattoli (1983) by making use of Magnus' Theorem (Magnus 1954), i.e. we shall 
employ the following expansion 

[exp( [xdx'?o(x'))]  0 + =exp[ [:dx' fo(xr)+L[:dxf[ 2 fo(x ' ) ,  1:' fo(x")  dx"]] 

(2.8) 
for further comments see Bosco and Dattoli (1983) and references therein. We have 
expanded the exponents up to the first commutator since the successive ones vanish. 
In the next section we shall see how the structure of the expansion becomes more 
complicated. 

We can therefore write explicitly 

sin p /2x  
M ? ( x )  =exP[ ( p/2  ) [exp(ip/2x)A-exp(-ip/2x)A'] 

We must now disentangle the exponents, this can be done by means of the dual of the 
Weyl-Barker-Hausdorff formula 

exp[A + B] = exp[A] exp[B] exp(-1/2[A, B]) 
which yields 
My(x) = exp[ -i f 1: ( singq"2/2')' dx'] exp[ -5 1 ( sin(/3/2)x p/2 )'] 

x exp[ ( sin( p/2 px/ 2) ) [A exp(iPx/2)1] i ' b  

From the above expression and from (2.4) we finally find 

(2.10) 

(2.11) 
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where 

N (  7) = R2[sin( a ~ /  2)/ ( a  / 2)12 (2.13) 

and P, is the ‘Poisson’ function defined as 

P,(x) = l /Jl!x‘/’  (2.14) 

We stress that the above result is by no means new, see e.g. a standard textbook such 
as Marcuse (1980). However, the operatorial technique we have developed turns out 
to be very effective in treating this kind of problem and may be easily generalised to 
more complicated cases as it will be seen in the next section. 

3. First order perturbed solution 

Let us now discuss the solution of (1.3) when p is not zero, but small enough, with 
respect to the other quantities entering the equation, that a first order perturbed 
solution may work. 

We can still use a transformation of the type (2.4), indeed by a natural generalisation 
we can set 

c,(x) = (-i)’M,(x) exp[-i(P +pl)lx] (3.1) 

where p = p / R .  
Inserting (3.1) into (1.3) we obtain the following equation 

The initial conditions are, of course, the same as (2.5). 
We now rewrite (3.2), by means of the operators A and At,  defined in the previous 

section, as 

dM,(x)/dx = [Iexp{i[P + p(2A’A + l)]x}A -exp{-i[P +p(2A+A - l)]x}A+[M,(x). 

By expanding the exponents up to the first order in p, (3.3) becomes 
(3.3) 

dMf(x)/dx = f (x)M,(x)  (3.4) 

where the ‘transfer operator’ f ( x ) ,  is now written as 

?(x) =-cosPixF-+isin PixF++2p(A’A)(a/a~)(-cosP~xF-+isin P;xF+) 

+p(a/ap)(cos PixF+-i sin PixF-). (3.5) 

F, = A +  exp(-i p ix )  * A  exp(i p ix) .  (3.6) 

The two operators F, just introduced, are defined as 

Equation (3.4) is only formally identical to (2.6) and the more complicated structure 
of the transfer operator ?(x), will cause more and more terms to appear in Magnus’ 
expansion. 

A rehandling of Magnus’ formula by Pechukas and Light (1966), has proved to 
be expedient for our purposes, namely 
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where the dots stand for the higher terms, which turn out to be all vanishing, because 
the last commutator we consider gives rise to a commuting function (at least up to 
the first order in p ) .  

The explicit evaluation of the exponent in (3.7) does not present any conceptural 
difficulty and reduces to a lengthy calculation of commutators and integrals. 

The calculation machinery, however, can be in some sense simplified by taking 
advantage of the ‘algebra’ of the F, operators, whose commuting properties have been 
reported in the appendix. 

After a tedious calculation we arrived at the following somewhat complex expression 

where 

i2( x )  = ipC(x)FZ + ipD(x)(A+A) + ipF(x) + iG(x )  

i , ( x )  = pH(x)F-  

(3.9) 

i 4 ( x )  = i p L ( x ) .  

The various functions entering the above expression are given below 

x 1  
C(x )  = -,+,sin P x  

P P  
D ( x )  = -1OC(x) -2x 

G ( x )  = PC(X) 

30 . x 14 3 32 x 4  3 
P 2 P  2 P 2 P  2 

P P P  

H ( x )  = 7 sin P-+? sin - P x  -7 x cos p-- ,  x cos - px 

16 4 
C ( x )  +ti x -7 sin 2Px. (3.10) 

88 
L ( x ) = ~  C(x ) -16  
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We have now further difficulty in writing down the explicit solution we are looking 
for. Indeed to disentangle the exponents we cannot use the dual of the Weyl-Baker- 
Hausdorff formula in the form (2.10), but we must take into account a number of 
successive commutators, in this connection an expansion quoted in the mathematical 
literature as the Zassenhaus expansion (Witschel 1975) i.e. 

exp(A + B )  = exp(A) exp(B) exp(-$A, B ] )  

X exp(-$[A, BI, BI-$[A, BI, AI) exp(-aA,  [A, [A, BIII 

-$[B, [A, [A, Bll1-8B, [B, [A, Bill) (3.11) 

has proved to be very useful. 
In this connection, neglecting the terms containing p 2 ,  and exploiting again the 

table of commutators given in the appendix, we arrive at the following expression for 
the first order perturbed solution of Cf 

Cf(r )=( - i ) f  exp( -g[:dr'N(rf)) exp(-ia/i) [Af ( r )+ iDI ( r ) ]  

where 

(3.12) 

(3.13) 
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P , ( N ( T ) )  is the Poisson function defined in (2.14) and the other functions of T 

entering the above expressions can be easily derived from the corresponding functions 
of x. 

The solution we have found appears to be very complicated, but some further 
physical assumptions, when one is treating a specific problem, could allow significant 
simplification in many cases and it is useful to avoid complex numerical calculations 
when a large number of f are coupled as happens, e.g., in the quantum analysis of the 
Free Electron Laser (Dattoli and Renieri 1983). 

4. Conclusions 

One can now ask what is the connection between the RN equation and the HRN one, 
or whether it is possible to derive them from a more general equation. 

We shall discuss this topic within the framework of a specific example. 
Let us consider the following equation: 

We have neglected the nonlinear term in 1, for the sake of simplicity, but this fact, 
as it will be seen in the following, by no means diminishes the generality of our argument. 

The equation (4.1) resembles the unpertubed HRN equation (2.1) apart from the 
constant n in the square roots, we shall show how, from the solution (4.1), in specified 
limits, one can derive both the solution of RN and HRN unperturbed equations (as well 
as the perturbed ones). 

To look for a solution of (4.1) we shall employ the procedure of 9 2 with only a 
few changes. 

We first introduce the new ‘label’ 

L = n + f  (4.2) 
so that, by performing a transformation analogous to (2.4), we can write down the 
following equation 

needless to say 

AM, = dLML-, 

A+ML( L + 1 )  ”*M,r+1. 

Applying now the same procedure as in 9 2, we easily find 

(4.4) 
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We can now discuss two possible limiting cases: 
(i) n = O .  

(ii) n >> 1. 
This case yields straightforwardly the Poisson function solution already found in 0 2. 

This case deserves a few words of comment. The following relations hold 

[( n + I)! n ! ] ' l 2 / (  n - s)! - r ~ " ~ n ! / ( n  - s)! - n'/'+'. (4.6) 

Furthermore, since 

where JI is the Ith Bessel function and 

d = a J n  
we find, for fi < 1 

(4.7) 

(4.8) 

which is the Bessel type solution already found in Bosco and Dattoli (1983). 

problem arising is the relative complexity of the algebra involved. 

would work. 

The above considerations can also be extended to the perturbed case, the only 

One may now ask whether a more conventional approach to this kind of equation 

We will consider for simplicity the equation 

ic; = ~ ( J I +  lCl+l+JICl-l) Cf (0) = 61,o (4.10) 

whose solution within the framework of our formalism may be obtained straightfor- 
wardly as 

Cf(T)  = (-i)'[exp(-4(n~)')/J1!](n~)'. (4.11) 

A more conventional approach to (4.10) may be the one based on the Laplace 
Transform (LT) technique, indeed the LT of C!(T)  is 

S l ( P )  = loG C,(x) e-" dx 

ipsl ( P )  - [ ( I  + 1) 1 / 2 ~ 1 + 1  (P) + JIS~-, (P)] = 

(x=nt) 

so that inserting (4.12) into (4.10) we find 

(4.12) 

(4.13) 

which is a linear first order difference equation with variable coefficients, with the 
important feature that it contains the boundary conditions of the problem. 

The solution of (4.13) is not an easy task and we have been unable to find a closed 
expression by means of a direct technique. However, we can reverse the problem and 
utilise our technique to give the solution of the difference equation (4.10), indeed 
(4.11) and (4.13) give 

(4.14) 

This very simple example may illustrate the potentiality of the method proposed in 
the present paper. In a forthcoming paper we shall better illustrate the effectiveness 

SI ( P )  = i f  ( 1 / JI!  ) v i z (  d/ dp) exp( P2/  2) erfc( P/ 42) .  
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of our operatorial technique applying it to differential difference equations of the RN 
type with time dependent coefficient where the LT approach becomes really impracti- 
cable. 

The technique we have presented has proved to be very useful for a perturbative 
analysis of this class of ”type equations (both harmonic and conventional); we could 
in principle extend the calculation to higher order in p, the underlying complexity is 
only due to the proliferation of commutators both in the Magnus and Zassenhaus 
expansions. We must, however, emphasise that one can always extract from the exact 
solution, one of ‘practical usefulness’ for a specific physical situation, but this needs 
specific assumption within the framework of the simplification allowed by the problem 
one is considering. 

In a further paper (Dattoli and Richetta 1983) we shall show how the above 
formalism turns out to be very useful in understanding the coherence properties of 
the Free Electron Laser and the generation of squeezed states. 
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Appendix 

In the third section we have introduced the operators 

F, =A’ exp(-ipx/2) * A exp(ipx/2) (AI) 
whose commutation properties play a crucial role in the procedure of solution we have 
worked out. 

We must emphasise that the various commutators entering our calculations permit, 
as a remarkable feature, the fact that they can be always expressed in terms of products 
of (Al)  and no extra operators appear. 

This kind of ‘group’ algebraic structure greatly simplifies the machinery of the 
calculation involved. 

In the following we report the table of commutators whose explicit calculation has 
been required in order to carry out the solution. 

[F+, F-I = 2 ,  [F,, A f A ] = - F , ,  [F,, A+AF,]=-F,F, 

[F,, A+AF,] = -F$ f 2A+A, 

[F,, F!F+] = -[F-, F-F:] = 4F-F+, 

[F,, F,F,F,] = +4(F,F, * 1) 

[F,, F:F,] = *2F$ ,  

[F,, F,F,F,I = *2F$,  

[F,, F! ] = F,F?, 

[F+, F+F? 3 = -[F-, F:F-]= 4F+F- 
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